Fast gas heating in N2/O2 mixtures under nanosecond surface dielectric barrier discharge: the effects of gas pressure and composition.
نویسندگان
چکیده
The fractional electron power quickly transferred to heat in non-equilibrium plasmas was studied experimentally and theoretically in N(2)/O(2) mixtures subjected to high electric fields. Measurements were performed in and after a nanosecond surface dielectric barrier discharge at various (300-750 Torr) gas pressures and (50-100%) N(2) percentages. Observations showed that the efficiency of fast gas heating is almost independent of pressure and becomes more profound when the fraction of O(2) in N(2)/O(2) mixtures increases. The processes that contribute towards the fast transfer of electron energy to thermal energy were numerically simulated under the conditions considered. Calculations were compared with measurements and the main channels of fast gas heating were analysed at the gas pressures, compositions and electric fields under study. It was shown that efficient fast gas heating in the mixtures with high fraction of O(2) is due to a notable contribution of heat release during quenching of electronically excited N(2) states in collisions with O(2) molecules and to ion-ion recombination. The effect of hydrocarbon addition to air on fast gas heating was numerically estimated. It was concluded that the fractional electron power transferred to heat in air, as a first approximation, could be used to estimate this effect in lean and stoichiometric hydrocarbon-air mixtures.
منابع مشابه
Energy Balance and Gas Thermalization in a High Power Microwave Discharge in Mixtures
The dynamics of fast gas heating in a high power microwave discharge in air, is investigated in the framework of FDTD simulations of the Maxwell equations coupled with the fluid simulations of the plasma. It is shown that, an ultra-fast gas heating of the order of several 100 Kelvins occurs in less than 100 ns. The main role in the heating is played by the electron impact dissociation of , diss...
متن کاملSterilization of Tubular Medical Instruments Using Wire-type Dielectric Barrier Discharge
In this study, sterilization of tubular medical instruments such as catheter and breathing circuit was studied using a wire-type dielectric barrier discharge(DBD) under atmospheric pressure condition. To investigate sterilization factors of DBD under the air condition, we carried out the sterilization experiments using Geobacillus stearothermophilus spores under various gas conditions, such as ...
متن کاملFast gas heating in nitrogenoxygen discharge plasma: II. Energy exchange in the afterglow of a volume nanosecond discharge at moderate pressures
The process of fast gas heating in air in the near afterglow of a pulsed nanosecond spatially uniform discharge has been investigated experimentally and numerically at moderate (3−9 mbar) pressures and high (200−400 Td) reduced electric fields. The temporal behavior of discharge current, deposited energy, electric field and temperature were measured. The role of processes with participation of ...
متن کاملA Numerical Study of the Sour Gas Reforming in a Dielectric Barrier Discharge Reactor
In this paper, using a one-dimensional simulation model, the reforming process of sour gas, i.e. CH4, CO2, and H2S, to the various charged particles and syngas in a dielectric barrier discharge (DBD) reactor is studied. An electric field is applied across the reactor radius, and thus a non-thermal plasma discharge is formed within the reactor. Based on the space...
متن کاملSurface Decontamination by Dielectric Barrier Discharge Plasma
Background: Dielectric barrier discharge (DBD), a source of non-thermal plasma, is used in surface decontamination. Objective: To study the effect of DBD plasma treatment, we evaluated the effect of plasma exposure time on inactivation of Bacillus subtilis. Results: Applying the DBD plasma to the culture of B. subtilis caused complete sterilization of the surface without any thermal effects. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 373 2048 شماره
صفحات -
تاریخ انتشار 2015